School of Engineering & Irving K. Barber Faculty of Science, The University of British Columbia - Okanagan **Creating Engaging Learning Tools with Digital Assessments**

Peyman Yousefi, Ernest Goh, Firas Moosvi

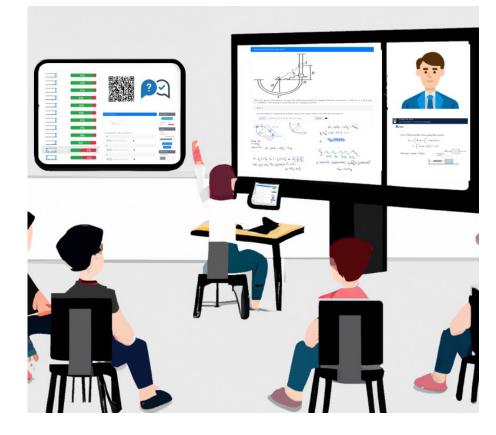
Abstract

- The project developed open-source digital learning and assessment resources on PrairieLearn, addressing challenges from university policies prohibiting fee-based tools.
- It provides instructors flexibility, enhances students' experiences, and enables equitable, inclusive assessments.
- The platform is fully compliant, offering randomized questions, instant feedback, and reducing academic dishonesty.

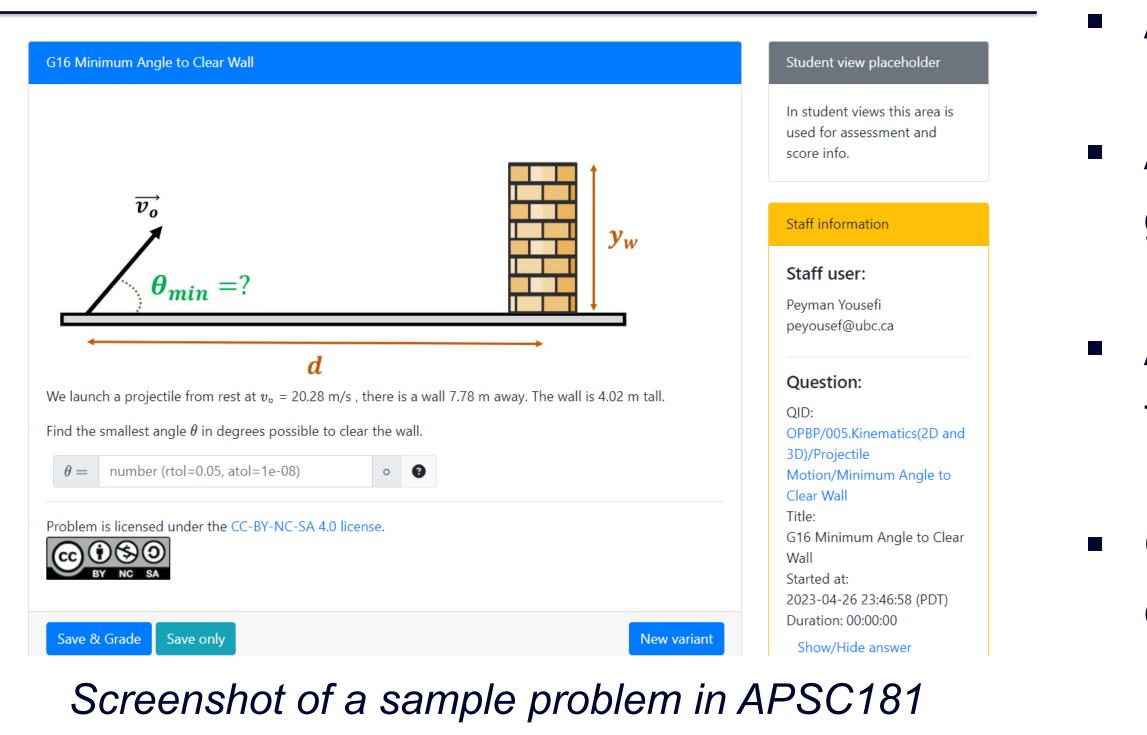
High costs for textbooks and integrated course software create barriers to education. Open-source digital learning environments can reduce financial burden and increase flexibility for diverse learners. This project specifically developed an open-source question bank for digital assessments in engineering mechanics (Dynamics) and Physics, containing algorithmically generated questions PrairieLearn's promoting active learning. personalized problems, automatic grading, and instant feedback foster understanding and reduce academic dishonesty. Instructors can re-use and expand the question bank without access-time limitations.

Goals of the project

- Facilitating active learning and engagement in various class formats
- Providing **instant feedback** in assessments for improved performance monitoring
- Reducing costs and enhancing accessibility through an open-source platform


Project Outcomes and Deliverables

- A bank of algorithmically generated questions for the open-source platform, PrairieLearn
- Resources for engaging flipped classrooms and hybrid courses.


- Questions are categorized and tagged by topics and learning outcomes covering the syllabi of APSC181, PHYS111, PHYS112, PHYS121 & PHYS122. Questions can also be used in any other calculus- or algebra-based introductory physics course.
- A "sample course" with these problems for instructors wanting to replicate or adapt this course for their contexts.

Engaging lectures, promote active learning, monitoring students' performance and learning gains.

PrairieLearn

PrairieLearn is an open-source platform for creating interactive assessments. Instructors can generate different question types, like graphing and programming, with randomized parameters feedback. Questions are written in and Markdown and algorithmically randomized using features auto-grading, Python. PrairieLearn graphical drawing, and symbolic algebra, and provides statistics to modify lectures and assess learning gains.

	Students	Scores	Mean Score	Mean Duration
Weekly Activities [7%]				
WA1 Weekly Activities - Week 01: Due January 23	328		91%	55m
WA2 Weekly Activities - Week 02: Due January 30	323		91%	1h 50m
WA3 Weekly Activities - Week 03: Due February 6	322		91%	50m
WA4 Weekly Activities - Week 04: Due Febuary 13	317		82%	1h 15m
WA5 Weekly Activities - Week 05: Due March 6	329		85%	1h 4m
WA6 Weekly Activities - Week 06: Due March 13	318		83%	1h 40m
WA7 Weekly Activities - Week 07: Due March 20	315		91%	1h 3m
WA8 Weekly Activities - Week 08: Due March 27	309		91%	50m
WA9 Weekly Activities - Week 09: Due April 3	315		90%	56m
WA10 Weekly Activities - Week 10: Due April 10	306		76%	2h 0m
WA11 Weekly Activities - Week 11: Due April 21 (Optional)	192		41%	31m
WA12 Weekly Activities - Week 12: Due April 21 (Optional)	123	L	47%	26m
Bonus Practice [OPTIONAL]		Exams		
BP1 Chapter 1 Practice 262	15m	E1 Mid	term Exam DRC	53%
BP2 Chapter 2 Practice 223	1h 40m	E1 Mid	term Exam Special	40%
BP3 Chapter 3 Practice 187	48m	E1 Mid	term Exam	52%
BP4 Chapter 4 Practice 186 23%	1h 6m			
BP5 Chapter 5 Practice 201 27%	41m			

The Platform provides the instructor with information about students' performance and practice time

Sustainability Plan

The developed resources target fundamental engineering and science courses, ensuring their relevance in the long term.

Instructors and TAs can easily update the content to accommodate syllabus changes, keeping it current.

Detailed provided instructions are to instructors & TAs for adding new questions to the resource.

Solutions & hints are accessible to students after a set due date.

The project offers:

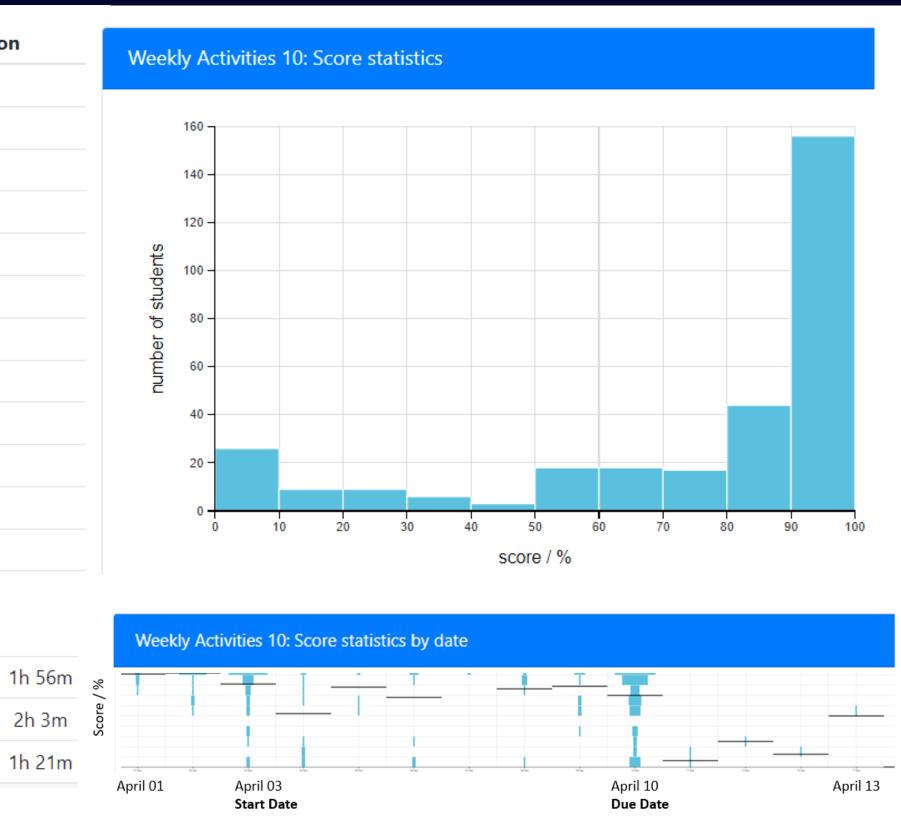
A tailored Canadian version accessible with **UBC CWL** (ca.prairielearn.com)

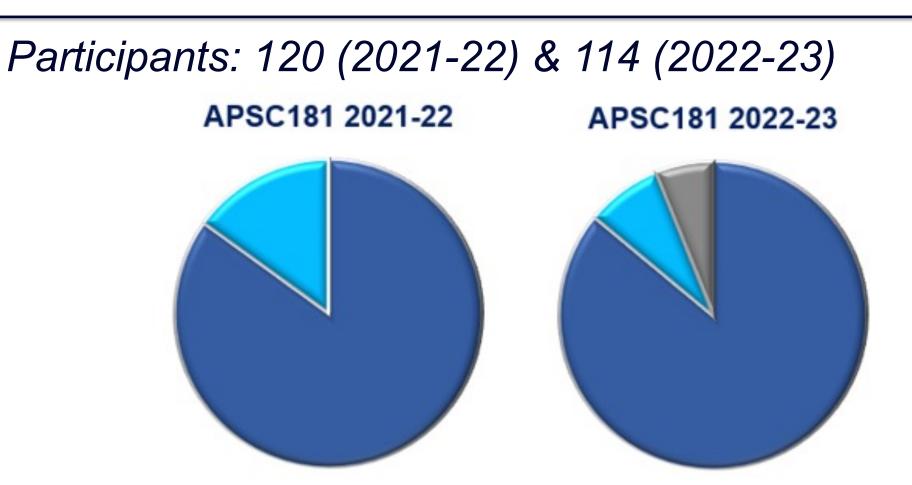
Advanced features for creating dynamic, autograded questions and handling various tasks, making it ideal for engineering education.

A large, dedicated community with partners in the United States, Canada, and China, ensuring its availability for the foreseeable future.

Compatibility with plain text (Markdown) for easy conversion to other platforms if necessary.

Acknowledgement


We gratefully acknowledge the financial support for this project provided by UBC Okanagan Provost Office via the ALT2040 Fund. We also acknowledge the support by UBC Okanagan Engineering APSC181 2021W2 & 2022W2 students via their feedback and encouragement during the first term of using the platform


Project Evaluation

Post-course student survey measures satisfaction. Documentation and sample course created for Open Problem Bank. Courses currently using the OPBs: **Dynamics (N=337)**, Physics 111 (N=287), Physics 112 (N=389), Physics <u>121 (N=139), Physics 122 (N=236).</u>

Question: I feel that "Lecture Activity" assignments in this course helped me learn Dynamics...

Stron Some Neith Some Stron

Positive Experience Negative Experience No Idea

	2021-22	2022-23
ngly Agree	49.6%	48.3%
ewhat Agree	41.3%	38.7%
ner Agree nor Disagree	5.8%	10.3%
ewhat Disagree	1.7%	2.5%
ngly Disagree	1.7%	0%